alexa Microorganisms in honey.
Pharmaceutical Sciences

Pharmaceutical Sciences

Research & Reviews: Journal of Hospital and Clinical Pharmacy

Author(s): Snowdon JA, Cliver DO

Abstract Share this page

Abstract Knowledge of the moisture and temperature conditions influencing growth of microorganisms in honey has long been used to control the spoilage of honey. However, the need for additional microbiological data on honey will increase as new technologies for, and uses of honey develop. Microorganisms in honey may influence quality or safety. Due to the natural properties of honey and control measures in the honey industry, honey is a product with minimal types and levels of microbes. Microbes of concern in post-harvest handling are those that are commonly found in honey (i.e., yeasts and spore-forming bacteria), those that indicate the sanitary or commercial quality of honey (i.e., coliforms and yeasts), and those that under certain conditions could cause human illness. Primary sources of microbial contamination are likely to include pollen, the digestive tracts of honey bees, dust, air, earth and nectar, sources which are very difficult to control. The same secondary (after-harvest) sources that influence any food product are also sources of contamination for honey. These include air, food handlers, cross-contamination, equipment and buildings. Secondary sources of contamination are controlled by good manufacturing practices. The microbes of concern in honey are primarily yeasts and spore-forming bacteria. Total plate counts from honey samples can vary from zero to tens of thousands per gram for no apparent reason. Most samples of honey contain detectable levels of yeasts. Although yeast counts in many honey samples are below 100 colony forming units per gram (cfu/g), yeasts can grow in honey to very high numbers. Standard industry practices control yeast growth. Bacterial spores, particularly those in the Bacillus genus, are regularly found in honey. The spores of C. botulinum are found in a fraction of the honey samples tested-normally at low levels. No vegetative forms of disease-causing bacterial species have been found in honey. Bacteria do not replicate in honey and as such high numbers of vegetative bacteria could indicate recent contamination from a secondary source. Certain vegetative microbes can survive in honey, at cool temperatures, for several years. However, honey has anti-microbial properties that discourage the growth or persistence of many microorganisms. Typically, honey can be expected to contain low numbers and a limited variety of microbes. A routine microbiological examination of honey might include several different assays. A standard plate count provides general information. Specialized tests, such as a count of yeasts and an assay for bacterial spore-formers, may also be useful. An indicator of sanitary quality as provided by coliform counts might be included. Additional tests, to explain unusually high counts or address a certain problem, may be needed. The use of honey in products that receive no or limited heat treatment may require additional tests. More information on the source and control of microbes in honey is needed to answer the concerns currently facing the industry.
This article was published in Int J Food Microbiol and referenced in Research & Reviews: Journal of Hospital and Clinical Pharmacy

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords