alexa MicroRNA miR-302 inhibits the tumorigenecity of human pluripotent stem cells by coordinate suppression of the CDK2 and CDK4 6 cell cycle pathways.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Lin SL, Chang DC, Ying SY, Leu D, Wu DT

Abstract Share this page

Abstract miR-302 is the major microRNA found in human embryonic stem cells and induced pluripotent stem cells, but its function has been unclear. In mice, there is evidence that miR-302 may silence p21Cip1 (CDKN1A) to promote cell proliferation, whereas studies in human reprogrammed pluripotent stem cells suggested that elevated miR-302 expression inhibited cell cycle transit. Here, we clarify this difference, reporting that in human cells, miR-302 simultaneously suppressed both the cyclin E-CDK2 and cyclin D-CDK4/6 pathways to block>70\% of the G1-S cell cycle transition. Concurrent silencing of BMI-1, a cancer stem cell marker targeted by miR-302, further promoted tumor suppressor functions of p16Ink4a and p14/p19Arf directed against CDK4/6-mediated cell proliferation. Among all G1 phase checkpoint regulators, human p21Cip1 was found not to be a valid target of miR-302. Overall, our findings indicate that miR-302 inhibits human pluripotent stem cell tumorigenicity by enhancing multiple G1 phase arrest pathways rather than by silencing p21Cip1. Copyright © 2010 AACR. This article was published in Cancer Res and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords