alexa MicroRNA miR-BART20-5p stabilizes Epstein-Barr virus latency by directly targeting BZLF1 and BRLF1.
Chemistry

Chemistry

Medicinal chemistry

Author(s): Jung YJ, Choi H, Kim H, Lee SK

Abstract Share this page

Abstract Epstein-Barr virus (EBV) is a human herpesvirus associated with various tumors. Rather than going through the lytic cycle, EBV maintains latency by limiting the expression of viral genes in tumors. Viral microRNAs (miRNAs) of some herpesviruses have been reported to directly target immediate early genes and suppress lytic induction. In this study, we investigated whether BamHI-A rightward transcript (BART) miRNAs targeted two EBV immediate early genes, BZLF1 and BRLF1. Bioinformatic analysis predicted that 12 different BART miRNAs would target BRLF1. Of these, the results of a luciferase reporter assay indicated that only one interacted with the 3' untranslated region (UTR) of BRLF1: miR-BART20-5p. miR-BART20-5p's effect on gene expression involved two putative seed match sites in the BRLF1 3' UTR, but a mutant version of the miRNA, miR-BART20-5pm, had no effect on expression. As expected from the fact that the entire 3' UTR of BZLF1 resides within the 3' UTR of BRLF1, miR-BART20-5p interacted with the 3' UTR of BZLF1 as well. BZLF1 and BRLF1 mRNA and protein expression was suppressed in cells of an AGS cell line infected with the recombinant Akata strain of EBV (AGS-EBV) transfected with a miR-BART20-5p mimic. The expression of various EBV early proteins was also suppressed by the miR-BART20-5p mimic. In contrast, BZLF1 and BRLF1 expression in AGS-EBV cells transfected with a miR-BART20-5p inhibitor was enhanced. Furthermore, progeny virus production was suppressed by the miR-BART20-5p mimic and enhanced by the miR-BART20-5p inhibitor in AGS-EBV cells induced for the lytic cycle. Our data suggest that miR-BART20-5p plays a key role in latency maintenance in EBV-associated tumors by directly targeting immediate early genes. IMPORTANCE: Herpesviruses maintain latency using various mechanisms and establish lifelong infection in the host. From time to time, herpesviruses are reactivated and express immediate early genes which trigger a lytic cascade, leading to the production of progeny viruses. Recently, some herpesviruses have been shown to use their own microRNAs (miRNAs) to downregulate immediate early genes to inhibit the lytic cycle. This study presents evidence that EBV also downregulates two immediate early genes by miR-BART20-5p to suppress the lytic cycle and progeny virus production. Overall, this is the first study to report the direct regulation of EBV immediate early genes by an EBV miRNA, implying its likely importance in latency maintenance in EBV-associated tumors. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
This article was published in J Virol and referenced in Medicinal chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version