alexa MicroRNA pathways modulate polyglutamine-induced neurodegeneration.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Pharmacogenomics & Pharmacoproteomics

Author(s): Bilen J, Liu N, Burnett BG, Pittman RN, Bonini NM

Abstract Share this page

Abstract Nine human neurodegenerative diseases are due to expansion of a CAG repeat- encoding glutamine within the open reading frame of the respective genes. Polyglutamine (polyQ) expansion confers dominant toxicity, resulting in neuronal degeneration. MicroRNAs (miRNAs) have been shown to modulate programmed cell death during development. To address whether miRNA pathways play a role in neurodegeneration, we tested whether genes critical for miRNA processing modulated toxicity induced by the spinocerebellar ataxia type 3 (SCA3) protein. These studies revealed a striking enhancement of polyQ toxicity upon reduction of miRNA processing in Drosophila and human cells. In parallel genetic screens, we identified the miRNA bantam (ban) as a potent modulator of both polyQ and tau toxicity in flies. Our studies suggest that ban functions downstream of toxicity of the SCA3 protein, to prevent degeneration. These findings indicate that miRNA pathways dramatically modulate polyQ- and tau-induced neurodegeneration, providing the foundation for new insight into therapeutics. This article was published in Mol Cell and referenced in Journal of Pharmacogenomics & Pharmacoproteomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords