alexa Microsatellite evolution inferred from human-chimpanzee genomic sequence alignments.

Journal of Primatology

Author(s): Webster MT, Smith NG, Ellegren H, Webster MT, Smith NG, Ellegren H

Abstract Share this page

Abstract Most studies of microsatellite evolution utilize long, highly mutable loci, which are unrepresentative of the majority of simple repeats in the human genome. Here we use an unbiased sample of 2,467 microsatellite loci derived from alignments of 5.1 Mb of genomic sequence from human and chimpanzee to investigate the mutation process of tandemly repetitive DNA. The results indicate that the process of microsatellite evolution is highly heterogeneous, exhibiting differences between loci of different lengths and motif sizes and between species. We find a highly significant tendency for human dinucleotide repeats to be longer than their orthologues in chimpanzees, whereas the opposite trend is observed in mononucleotide repeat arrays. Furthermore, the rate of divergence between orthologues is significantly higher at longer loci, which also show significantly greater mutability per repeat number. These observations have important consequences for understanding the molecular mechanisms of microsatellite mutation and for the development of improved measures of genetic distance.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Primatology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version