alexa Microsomal prostaglandin E synthase-1 inhibits PTEN and promotes experimental cholangiocarcinogenesis and tumor progression.
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutica Analytica Acta

Author(s): Lu D, Han C, Wu T

Abstract Share this page

Abstract BACKGROUND & AIMS: Microsomal prostaglandin E synthase-1 (mPGES-1) is a rate-limiting enzyme that is coupled with cyclooxygenase (COX)-2 in the synthesis of prostaglandin E2. Although COX-2 is involved in the development and progression of various human cancers, the role of mPGES-1 in carcinogenesis has not been determined. We investigated the role of mPGES-1 in human cholangiocarcinoma growth. METHODS: We used immunohistochemical analyses to examine the expression of mPGES-1 in formalin-fixed, paraffin-embedded human cholangiocarcinoma tissues. The effects of mPGES-1 on human cholangiocarcinoma cells were determined in vitro and in SCID mice. Immunoblotting and immunoprecipitation assays were performed to determine the levels of PTEN and related signaling molecules in human cholangiocarcinoma cells with overexpression or knockdown of mPGES-1. RESULTS: mPGES-1 is overexpressed in human cholangiocarcinoma tissues. Overexpression of mPGES-1 in human cholangiocarcinoma cells increased tumor cell proliferation, migration, invasion, and colony formation; in contrast, RNA interference knockdown of mPGES-1 inhibited tumor growth parameters. In SCID mice with tumor xenografts, mPGES-1 overexpression accelerated tumor formation and increased tumor weight (P<.01), whereas mPGES-1 knockdown delayed tumor formation and reduced tumor weight (P<.01). mPGES-1 inhibited the expression of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), leading to activation of the epidermal growth factor/phosphoinositide 3-kinase/AKT/mammalian target of rapamycin signaling pathways in cholangiocarcinoma cells. mPGES-1-mediated inhibition of PTEN is regulated through blocking of early growth response-1 sumoylation and binding to the 5'-untranslated region of the PTEN gene. CONCLUSIONS: mPGES-1 promotes experimental cholangiocarcinogenesis and tumor progression by inhibiting PTEN. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
This article was published in Gastroenterology and referenced in Pharmaceutica Analytica Acta

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords