alexa Microvascular porcine model for the optimization of vascularized composite tissue transplantation.
Surgery

Surgery

Journal of Transplantation Technologies & Research

Author(s): Villamaria CY, Rasmussen TE, Spencer JR, Patel S, Davis MR

Abstract Share this page

Abstract BACKGROUND: Devastating extremity injuries are prevalent but most often survivable on the modern battlefield. The complexity of these injuries requires advanced methods of reconstruction. This study is designed to validate the feasibility of gracilis myocutaneous flap transplantation via microvascular free tissue transfer in a porcine model. This model will facilitate study of autotransplant physiology as well as vascularized composite allotransplantation as an evolving method for reconstructing previously nonreconstructable injuries. MATERIAL AND METHODS: A donor gracilis myocutaneous flap is procured from Yorkshire swine. The right external carotid artery and internal jugular vein are prepared as the recipient axis for microvascular anastomoses. Group 1 undergoes immediate microvascular anastomosis with resultant 1-h ischemic period. Group 2 undergoes delayed anastomosis with 3-h ischemic period. Markers of ischemia-reperfusion injury are evaluated after anastomosis and on postoperative days 1, 2, 7, and 14. RESULTS: A novel porcine model for microvascular composite tissue transplantation is demonstrated. Ischemia period-dependent elevations in circulating biomarkers (lactate dehydrogenase [LDH], creatine kinase [CK], and aspartate transaminase [AST]) demonstrate the effects of prolonged ischemia. Both groups showed marked LDH elevation without significant statistical intergroup difference (P=0.250). The difference in CK and AST levels at 24h showed strong significance (P<0.0001). CONCLUSIONS: A novel method of vascularized gracilis myocutaneous flap transplantation was validated in the Yorkshire swine. Assays for skeletal muscle tissue injury (LDH, CK, and AST) showed ischemia period-dependent response providing assessment of ischemia-reperfusion injury at the cellular level. Subsequent studies will evaluate agents that mitigate ischemia-reperfusion injury and transition these findings to potentiate vascularized composite allotransplantation. Published by Elsevier Inc. This article was published in J Surg Res and referenced in Journal of Transplantation Technologies & Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

OMICS International Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version