alexa Microwave Dielectric Behavior of Wet Soil-Part 1: Empirical Models and Experimental Observations
Environmental Sciences

Environmental Sciences

Hydrology: Current Research

Author(s): Martti T Hallikainen, Fawwaz T Ulaby, Myron C Dobson

Abstract Share this page

This is the first paper in a two-part sequence that evaluates the microwave dielectric behavior of soil-water mixtures as a function of water content, temperature, and soil textural composition. Part I presents the results of dielectric constant measurements conducted for five different soil types at frequencies between 1.4 and 18 GHz. Soil texture is shown to have an effect on dielectric behavior over the entire frequency range and is most pronounced at frequencies below 5 GHz. In addition, the dielectric properties of frozen soils suggest that a fraction of the soil water component remains liquid even at temperatures of -24ý C. The dielectric data as measured at room temperature are summarized at each frequency by polynomial expressions dependent upon both the volumetric moisture content m and the percentage of sand and clay contained in the soil; separate polynomial expressions are given for the real and imaginary parts of the dielectric constant. In Part II, two dielectric mixing models will be presented to account for the observed behavior: 1) a semiempirical refractive mixing model that accurately describes the data and requires only volumetric moisture and soil texture as inputs, and 2) a theoretical four-component mixing model that explicitly accounts for the presence of bound water.

  • To read the full article Visit
  • Subscription
This article was published in IEEE Transactions on Geoscience and Remote Sensing and referenced in Hydrology: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version