alexa Minocycline reduces the development of abnormal tau species in models of Alzheimer's disease.
Pathology

Pathology

Journal of Clinical & Experimental Pathology

Author(s): Noble W, Garwood C, Stephenson J, Kinsey AM, Hanger DP,

Abstract Share this page

Abstract Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles of hyperphosphorylated, aggregated tau protein and extracellular deposits of beta-amyloid peptide. Increased beta-amyloid levels are thought to precede tangle formation, but tau pathology is more closely related to neuronal death. Minocycline, a tetracycline derivative, has potent antiinflammatory, antiapoptotic, and neuroprotective effects in several models of neurodegenerative disease, including models of AD with amyloid pathology. We have used both in vitro and in vivo models of AD to determine whether minocycline may have therapeutic efficacy against tau pathology. In primary cortical neurons, minocycline prevents beta-amyloid-induced neuronal death, reduces caspase-3 activation, and lowers generation of caspase-3-cleaved tau fragments. Treatment of tangle-forming transgenic mice (htau line) with minocycline results in reduced levels of tau phosphorylation and insoluble tau aggregates. The in vivo effects of minocycline are also associated with reduced caspase-3 activation and lowered tau cleavage by caspase-3. In tau mice, we find that conformational changes in tau are susceptible to minocycline treatment, but are not directly associated with the amount of tau fragments produced, highlighting a dissociation between the development of these pathological tau species. These results suggest a possible novel therapeutic role for minocycline in the treatment of AD and related tauopathies. This article was published in FASEB J and referenced in Journal of Clinical & Experimental Pathology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords