alexa MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of microcystin-LR.
Chemical Engineering

Chemical Engineering

Journal of Chromatography & Separation Techniques

Author(s): Chianella I, Piletsky SA, Tothill IE, Chen B, Turner AP

Abstract Share this page

Abstract Microsystin-LR is one of the most widespread and dangerous toxins produced by the freshwater Cyanobacteria. The contamination of water supplies with microcystin-LR has been reported in several areas around the world and the development of an easy-to-use, rapid, robust and inexpensive sensor for this toxin is urgently required. In this work an artificial receptor for microcystin-LR was synthesised using the technique of molecular imprinting. The composition of the molecularly imprinted polymer (MIP) was optimised using computer modelling. The synthesised polymer was used both as a material for solid-phase extraction (SPE) and as a sensing element in a piezoelectric sensor. Using the combination of SPE followed by detection with a piezoelectric sensor the minimum detectable amount of toxin was 0.35 nM. The use of MIP-SPE provided up to 1000 fold pre-concentration, which was more than sufficient for achieving the required detection limit for microcystin-LR in drinking water (1 nM). This work is the first example where the same MIP receptor has been used successfully for both SPE and the corresponding sensor.
This article was published in Biosens Bioelectron and referenced in Journal of Chromatography & Separation Techniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version