alexa miR133a regulates cardiomyocyte hypertrophy in diabetes.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Feng B, Chen S, George B, Feng Q, Chakrabarti S

Abstract Share this page

Abstract BACKGROUND: Diabetic cardiomyopathy, characterized by cardiac hypertrophy and contractile dysfunction, eventually leads to heart failure. We have previously shown that alterations of a number of key molecules are involved in producing cardiomyocyte hypertrophy in diabetes. The aim of the present study was to determine whether microRNAs (miRNA) play a role in mediating altered gene expression and structural/functional deficits in the heart in diabetes. METHODS: STZ-induced diabetic mice were haemodynamically investigated after 2 months of diabetes to establish the development of cardiomyopathy. The tissues were then examined for gene expression and microRNA analysis. We further investigated neonatal rat cardiomyocytes to identify the mechanisms of glucose-induced hypertrophy and the potential role of miR133a. RESULTS: Diabetic mice showed myocardial contractile dysfunction and augmented mRNA expression of atrial and brain natriuretic peptides (ANP, BNP), MEF2A and MEF2C, SGK1 and IGF1R compared to age- and sex-matched controls. Cardiac tissues from these mice showed alteration of multiple miRNAs by array analysis including miR133a, which was confirmed by RT-PCR. In vitro exposure of cardiomyocytes to high levels of glucose produced hypertrophic changes and reduced expression of miRNA133a. Finally, transfection of miR133a mimics prevented altered gene expression and hypertrophic changes. CONCLUSION: Data from these studies demonstrate a novel glucose-induced mechanism regulating gene expression and cardiomyocyte hypertrophy in diabetes which is mediated through miR133a. Copyright (c) 2009 John Wiley & Sons, Ltd. This article was published in Diabetes Metab Res Rev and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords