alexa Mitochondria and calcium flux as targets of neuroprotection caused by minocycline in cerebellar granule cells
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutical Regulatory Affairs: Open Access

Author(s): GarciaMartinez EM

Abstract Share this page

Minocycline, an antibiotic of the tetracycline family, has attracted considerable interest for its theoretical therapeutic applications in neurodegenerative diseases. However, the mechanism of action underlying its effect remains elusive. Here we have studied the effect of minocycline under excitotoxic conditions. Fluorescence and bioluminescence imaging studies in rat cerebellar granular neuron cultures using fura2/AM and mitochondria-targeted aequorin revealed that minocycline, at concentrations higher than those shown to block inflammation and inflammation-induced neuronal death, inhibited NMDA-induced cytosolic and mitochondrial rises in Ca(2+) concentrations in a reversible manner. Moreover, minocycline added in the course of NMDA stimulation decreased Ca(2+) intracellular levels, but not when induced by depolarization with a high K(+) medium. We also found that minocycline, at the same concentrations, partially depolarized mitochondria by about 5-30 mV, prevented mitochondrial Ca(2+) uptake under conditions of environmental stress, and abrogated NMDA-induced reactive oxygen species (ROS) formation. Consistently, minocycline also abrogates the rise in ROS induced by 75 microM Ca(2+) in isolated brain mitochondria. In search for the mechanism of mitochondrial depolarization, we found that minocycline markedly inhibited state 3 respiration of rat brain mitochondria, although distinctly increased oxygen uptake in state 4. Minocycline inhibited NADH-cytochrome c reductase and cytochrome c oxidase activities, whereas the activity of succinate-cytochrome c reductase was not modified, suggesting selective inhibition of complexes I and IV. Finally, minocycline affected activity of voltage-dependent anion channel (VDAC) as determined in the reconstituted system. Taken together, our results indicate that mitochondria are a critical factor in minocycline-mediated neuroprotection

This article was published in Biochem Pharmacol and referenced in Pharmaceutical Regulatory Affairs: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version