alexa Mitochondria and reactive oxygen species in renal cancer.
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): Hervouet E, Simonnet H, Godinot C

Abstract Share this page

Abstract In most cancer cells, the ATP necessary for survival and proliferation is derived from glycolysis rather than from oxidative phosphorylations (OXPHOS) even when oxygen supply would be adequate to sustain them. This phenomenon, named "aerobic glycolysis" by Warburg many years ago, can now be explained by a mechanism up-regulating the expression of genes involved in glucose transport, glucose metabolism, lactate formation and exit from the cell. In clear cell renal carcinoma, this mechanism is due to the stabilization of the hypoxia-inducible transcription factor HIF occurring when the tumor suppressor gene vhl is invalidated. HIF increases the transcription of genes involved in glycolysis and lactate metabolism. Although respiratory chain complex activities and subunit amounts are severely diminished, the transcription of genes involved in the structure and biogenesis of these complexes does not seem to be significantly decreased in these cancers but reactive oxygen species (ROS) production is increased. In this review, we discuss the roles that ROS may play in the decrease of OXPHOS in cancer and in the regulation of the mitochondria-induced initiation of apoptosis. This article was published in Biochimie and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords