alexa Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Andreazza AC, Shao L, Wang JF, Young LT

Abstract Share this page

Abstract CONTEXT: Accumulating evidence suggests that mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of bipolar disorder and schizophrenia. It remains unclear whether mitochondrial dysfunction, specifically complex I impairment, is associated with increased oxidative damage and, if so, whether this relationship is specific to bipolar disorder. OBJECTIVE: To evaluate whether decreased levels of the electron transport chain complex I subunit NDUFS7 are associated with complex I activity and increased oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder, schizophrenia, or major depressive disorder. DESIGN: Postmortem prefrontal cortex from patients and controls were assessed using immunoblotting, spectrophotometric, competitive enzyme immunoassay to identify group differences in expression and activity of complex I, and in oxidative damage in mitochondria. SETTING: University of British Columbia, Vancouver, Canada. Patients Forty-five patients with a psychiatric disorder (15 each with bipolar disorder, schizophrenia, and major depressive disorder) and 15 nonpsychiatric control subjects were studied. MAIN OUTCOME MEASURES: Oxidative damage to proteins and mitochondrial complex I activity. RESULTS: Levels of NDUFS7 and complex I activity were decreased significantly in patients with bipolar disorder but were unchanged in those with depression and schizophrenia compared with controls. Protein oxidation, as measured by protein carbonylation, was increased significantly in the bipolar group but not in the depressed or schizophrenic groups compared with controls. We observed increased levels of 3-nitrotyrosine in the bipolar disorder and schizophrenia groups. CONCLUSIONS: Impairment of complex I may be associated with increased protein oxidation and nitration in the prefrontal cortex of patients with bipolar disorder. Therefore, complex I activity and mitochondrial dysfunction may be potential therapeutic targets for bipolar disorder. This article was published in Arch Gen Psychiatry and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords