alexa Mitochondrial DNA alterations as ageing-associated molecular events.
Pathology

Pathology

Journal of Clinical & Experimental Pathology

Author(s): Wei YH

Abstract Share this page

Abstract Mitochondrial DNA (mtDNA) is a naked double-stranded circular extrachromosomal genetic element continuously exposed to the matrix that contains great amounts of reactive oxygen species and free radicals. The age-dependent decline in the capability and capacity of mitochondria to dispose these oxy-radicals will render mtDNA more vulnerable to mutations during the ageing process. During the past 3 years, more than 10 different types of deletions have been identified in the mtDNA of various tissues of old humans. Some of them were found only in a certain tissue but some others appeared in more than one organ or tissue. The 4977-bp deletion is the most prevalent and abundant one among these deletions. Skeletal muscle is the target tissue of most ageing-associated mtDNA deletions and has often been found to carry multiple deletions. The onset age of the various deletions in mtDNA varies greatly with individual and type of the deletion. The 4977-bp deletion has been independently demonstrated to occur in the mtDNA of various tissues of the human in the early third decade of life. However, the 7436-bp deletion was only detected in the heart mtDNA of human subjects in their late thirties. The others appeared only in older humans over 40 years old. No apparent sex difference was found in the onset age of these ageing-associated mtDNA deletions. The various ageing-associated deletions could be classified into two groups. Most of the deletions belong to the first group, in which the 5'- and 3'-end breakpoints of the deletion are flanked by 4-bp or longer direct repeats. The deletion in the second group occurs less frequently and shows no distinct repeat sequences flanking the deletion sites. These two groups of mtDNA deletions may occur by different mechanisms. The first group is most probably caused by internal recombination or slippage mispairing during replication of mtDNA by the D-loop mechanism. The deleted mtDNA and the deleted DNA fragment may be further degraded or escape from the mitochondria and get translocated into the nucleus. The latter route has been substantiated by many observations of inserted mtDNA sequences in the nuclear DNA. Thus, the fragments of migrating mtDNA may change the information content and expression level of certain nuclear genes and thereby promote the ageing process or cause cancer. Similar ageing-associated alterations of mtDNA have also been observed in aged animals and plants. I suggest that mtDNA deletions and other mutations to be discovered are molecular events generally associated with the ageing process.
This article was published in Mutat Res and referenced in Journal of Clinical & Experimental Pathology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords