alexa Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes.
Orthopaedics

Orthopaedics

Journal of Arthritis

Author(s): Kim J

Abstract Share this page

OBJECTIVE: Pro-inflammatory cytokines play a pivotal role in cartilage destruction during the progression of osteoarthritis (OA). Additionally, these cytokines are capable to generate reactive oxygen and nitrogen species within chondrocytes. Mitochondrion is a prime target of oxidative damage and an important player in aging and degenerative processes. The purpose of the present study was to investigate whether these cytokines will alter the mitochondrial DNA (mtDNA) integrity and mitochondrial function in both normal and osteoarthritic human chondrocytes.

DESIGN: Primary normal and osteoarthritic human chondrocyte cultures were exposed to various concentrations of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) for different time. Following exposure, chondrocytes were evaluated for mitochondrial DNA damage, ATP production, changes in mitochondrial transcription, and apoptosis. Adenoviral vectors were used to deliver DNA repair enzyme hOGG1 to mitochondria.

RESULTS: Pro-inflammatory cytokines IL-1beta and TNF-alpha disturb mitochondrial function in human chondrocytes by inducing mitochondrial DNA damage, decreasing energy production and mitochondrial transcription, which correlated with the induction of apoptosis. Increased NO production was the key factor responsible for accumulation of mtDNA damage after cytokine exposure. Mitochondrial superoxide production was also enhanced following pro-inflammatory cytokine exposure. OA chondrocyte mitochondria were more susceptible to damage induced by pro-inflammatory cytokines then mitochondria from normal chondrocytes. Protection of human chondrocytes from mtDNA damage by the mitochondria-targeted DNA repair enzyme hOGG1 rescued mtDNA integrity, preserved ATP levels, reestablished mitochondrial transcription, and significantly diminished apoptosis following IL-1beta and TNF-alpha exposure.

CONCLUSION: Mitochondrion is an important target in pro-inflammatory cytokine toxicity, maintaining of mitochondrial DNA integrity is necessary to prevent chondrocytes from apoptosis induced by IL-1beta and TNF-alpha.

This article was published in Osteoarthritis Cartilage and referenced in Journal of Arthritis

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords