alexa Mitochondrial iron loss from leukemia cells injured by macrophages. A possible mechanism for electron transport chain defects.
Medicine

Medicine

Advanced Techniques in Biology & Medicine

Author(s): Wharton M, Granger DL, Durack DT, Wharton M, Granger DL, Durack DT

Abstract Share this page

Abstract Activated macrophages inhibit replication of murine lymphoblastic leukemia L1210 cells without lysis. This inhibition of replication is associated with abnormalities of mitochondrial electron transport at the level of NADH dehydrogenase (NADH-DH) and succinate dehydrogenase (SDH). The mechanism of inhibition is unknown, although it has been demonstrated that as NADH-DH and SDH activity is lost, iron is released from cells. Because both NADH-DH and SDH contain numerous iron-sulfur clusters, damage to these structures may be one result of injury by activated macrophages. L1210 cells were labeled with 55Fe and co-cultivated with activated murine peritoneal macrophages (injured L1210 cells). At 48 h, injured L1210 cells had released 83 +/- 8\% (mean +/- SEM of 55Fe activity into the media, compared with 25 +/- 4\% release from control and 37 +/- 7\% from nondividing mitomycin C-treated control cells. All cells were greater than 90\% viable. These differences were also reflected in the iron content of the cells. Mitochondria were then separated by centrifugation after cell disruption and 55Fe activity was found to be similarly decreased in both mitochondrial and nonmitochondrial fractions of injured L1210 cells. To further characterize the changes in mitochondrial iron content, mitochondrial proteins from injured and control L1210 cells were separated by IEF and 55Fe activity of gel slices was determined. There was selective loss of 55Fe activity in the area of the gel corresponding to SDH and NADH-DH, suggesting that iron loss from iron-sulfur clusters may occur in L1210 cells injured by activated macrophages. Iron uptake into L1210 cells after removal from macrophages showed a rapid large influx of radioactive iron. L1210 cells in contact with macrophages appear to develop an iron-depleted state, which is dependent on the continued presence of macrophages.
This article was published in J Immunol and referenced in Advanced Techniques in Biology & Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords