alexa Mitochondrial malfunction and Ca2+ dyshomeostasis drive neuronal pathology in diabetes.
Pharmaceutical Sciences

Pharmaceutical Sciences

Biochemistry & Pharmacology: Open Access

Author(s): Verkhratsky A, Fernyhough P

Abstract Share this page

Abstract The World Health Organization (WHO) predicts there will be 300 million people world-wide with diabetes mellitus by 2025. Currently it is estimated that there are 20 and 60 million people suffering from diabetes mellitus in North America and Europe, respectively. Within this huge population of diabetic persons approximately 50\% will develop some form of sensory polyneuropathy, which involves the dying back of distal axons and a failure of axons to regenerate. This leads to incapacitating pain, sensory loss and poor wound healing. The end result is lower extremity amputation with approximately 90,000 diabetes-related amputations occurring each year in North America and the expectation of a 5-fold increase over the next 10 years due to increased incidence of type 2 diabetes. Abnormal neuronal Ca(2+) homeostasis and impaired mitochondrial function have been implicated in numerous CNS and PNS diseases including diabetic sensory neuropathy. The endoplasmic reticulum (ER), in part, regulates cellular Ca(2+) homeostasis and this process is linked to regulation of mitochondrial function and activity of anti-apoptotic signal transduction pathways. Here we review the current state of research regarding role of Ca(2+) dyshomeostasis and mitochondrial physiology in neuronal dysfunction in diabetes. The central impact of diabetes-induced alteration of Ca(2+) handling on sensory neurone function is discussed and related to abnormal ER performance. New results are presented showing suboptimal Ca(2+) concentration in the ER lumen in association with reduced SERCA2 expression in sensory neurones from type 1 diabetic rats. We hypothesize that deficits in neurotrophic factor support, specifically linked to diabetes-induced lowered expression of insulin and neurotrophin-3, triggers alterations of sensory neurone phenotype that are critical for the development of abnormal Ca(2+) homeostasis and associated mitochondrial dysfunction. The role of hyperglycaemia in diabetes is also discussed and we propose that high glucose concentration may impact at other sites to contribute to the heterogeneous aetiology of nerve damage in diabetes. This article was published in Cell Calcium and referenced in Biochemistry & Pharmacology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords