alexa Mn2+ sequestration by mitochondria and inhibition of oxidative phosphorylation.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Gavin CE, Gunter KK, Gunter TE

Abstract Share this page

Abstract Manganese is known to accumulate in mitochondria and in mitochondria-rich tissues in vivo. Although Ca2+ enhances mitochondrial Mn2+ uptake, ATP-bound Mn2+ is not sequestered by suspended rat brain mitochondria, and ATP binds Mn2+ even more tightly than it binds Mg2+. Physiological levels of the polyamine spermine enhanced 54 Mn2+ uptake at the low [Ca2+]s characteristic of unstimulated cells (approximately 100 nM). With succinate as substrate, Mn2+ inhibited oxygen consumption by suspensions of rat liver mitochondria after the addition of ADP but not after the addition of uncoupler. With glutamate/malate as substrate, Mn2+ inhibited ADP-stimulated respiration and also slightly inhibited uncoupler-stimulated respiration. State 4 (resting) respiration was unchanged in all cases, indicating that the inner membrane retained its impermeability to protons. These results suggest that Mn2+ was not oxidized and that it can interfere directly with oxidative phosphorylation, most likely by binding to the F1 ATPase. Mn2+ may also bind to the NADH dehydrogenase complex, but not strongly enough to affect electron transport in vivo. It is suggested that accumulation of manganese within the mitochondria of globus pallidus may help explain the distinctive pathology of manganism.
This article was published in Toxicol Appl Pharmacol and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords