alexa Mobility and recalcitrance of organo-chromium(III) complexes.
Biochemistry

Biochemistry

Biochemistry & Physiology: Open Access

Author(s): Puzon GJ, Tokala RK, Zhang H, Yonge D, Peyton BM,

Abstract Share this page

Abstract Hexavalent chromium [Cr(VI)] is a major industrial pollutant. Bioremediation of Cr(VI) to Cr(III) is a viable clean-up approach. However, Cr(VI) bioreduction also produces soluble organo-Cr(III) complexes, and little is known about their behavior in the environment. When tested with soil columns, citrate-Cr(III) showed little sorption to soil; malate-Cr(III) had limited partitioning with soil; and histidine-Cr(III) exhibited significant interaction with soil. It appears that the mobility varies depending on the organic ligand. Further, Ralstonia eutropha JMP 134 and Pseudomonas aeruginosa pAO1 readily degraded malate, citrate, and histidine, but not the corresponding organo-Cr(III) complexes. The recalcitrance is not due to toxicity, but the complexes are likely to cause hindrance to enzymes, as malate dehydrogenase and amino acid oxidase could not use malate-Cr(III) and histidine-Cr(III), respectively. The data are in agreement with the reports of soluble organo-Cr(III) complexes in the environment. This article was published in Chemosphere and referenced in Biochemistry & Physiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords