alexa Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons.
Neurology

Neurology

Journal of Alzheimers Disease & Parkinsonism

Author(s): Chen H, Qian K, Du Z, Cao J, Petersen A,

Abstract Share this page

Abstract Amyotrophic lateral sclerosis (ALS) presents motoneuron (MN)-selective protein inclusions and axonal degeneration but the underlying mechanisms of such are unknown. Using induced pluripotent cells (iPSCs) from patients with mutation in the Cu/Zn superoxide dismutase (SOD1) gene, we show that spinal MNs, but rarely non-MNs, exhibited neurofilament (NF) aggregation followed by neurite degeneration when glia were not present. These changes were associated with decreased stability of NF-L mRNA and binding of its 3' UTR by mutant SOD1 and thus altered protein proportion of NF subunits. Such MN-selective changes were mimicked by expression of a single copy of the mutant SOD1 in human embryonic stem cells and were prevented by genetic correction of the SOD1 mutation in patient's iPSCs. Importantly, conditional expression of NF-L in the SOD1 iPSC-derived MNs corrected the NF subunit proportion, mitigating NF aggregation and neurite degeneration. Thus, NF misregulation underlies mutant SOD1-mediated NF aggregation and axonal degeneration in ALS MNs. Copyright © 2014 Elsevier Inc. All rights reserved.
This article was published in Cell Stem Cell and referenced in Journal of Alzheimers Disease & Parkinsonism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords