alexa MODELING AND SIMULATION ON MICROPOROSITY FORMED DURING SQUEEZE CASTING OF ALUMINUM ALLOY
Engineering

Engineering

Advances in Automobile Engineering

Author(s): HAN Zhiqiang, LI Jinxi, YANG Wen

Abstract Share this page

A mathematical model for simulating the microporosity in squeeze casting of aluminum alloy has been developed, in which the heat transfer, solidification shrinkage, feeding flow, pressure transfer, and hydrogen conservation were taken into account. The shrinkage induced flow and the pressure drop in the mushy zone were calculated by solving continuity and momentum equations. A mechanical model was solved for obtaining the pressure transferred into the central area of the casting. By coupling the pressure drop with the pressure transferred into the central area, the pressure distribution in the mushy zone was calculated. Based on the hydrogen conservation equation, the microporosity volume fraction was calculated by referring to the pressure value in the mushy zone. The squeeze casting processes of aluminum alloy under different process conditions were simulated and the simulation results were compared with experimental results. It was shown that the simulation results agree well with the experimental results, and the increases in applied pressure and mould temperature tend to reduce the microporosity in the castings

This article was published in IMR and referenced in Advances in Automobile Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords