alexa Modeling event times with multiple outcomes using the Wiener process with drift.
Biomedical Sciences

Biomedical Sciences

Journal of Biomedical Systems & Emerging Technologies

Author(s): Horrocks J, Thompson ME

Abstract Share this page

Abstract Length of stay in hospital (LOS) is a widely used outcome measure in Health Services research, often acting as a surrogate for resource consumption or as a measure of efficiency. The distribution of LOS is typically highly skewed, with a few large observations. An interesting feature is the presence of multiple outcomes (e.g. healthy discharge, death in hospital, transfer to another institution). Health Services researchers are interested in modeling the dependence of LOS on covariates, often using administrative data collected for other purposes, such as calculating fees for doctors. Even after all available covariates have been included in the model, unexplained heterogeneity usually remains. In this article, we develop a parametric regression model for LOS that addresses these features. The model is based on the time, T, that a Wiener process with drift (representing an unobserved health level process) hits one of two barriers, one representing healthy discharge and the other death in hospital. Our approach to analyzing event times has many parallels with competing risks analysis (Kalbfleisch and Prentice, The Statistical Analysis of Failure Time Data, New York: John Wiley and Sons, 1980)), and can be seen as a way of formalizing a competing risks situation. The density of T is an infinite series, and we outline a proof that the density and its derivatives are absolutely and uniformly convergent, and regularity conditions are satisfied. Expressions for the expected value of T, the conditional expectation of T given outcome, and the probability of each outcome are available in terms of model parameters. The proposed regression model uses an approximation to the density formed by truncating the series, and its parameters are estimated by maximum likelihood. An extension to allow a third outcome (e.g. transfers out of hospital) is discussed, as well as a mixture model that addresses the issue of unexplained heterogeneity. The model is illustrated using administrative data.
This article was published in Lifetime Data Anal and referenced in Journal of Biomedical Systems & Emerging Technologies

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version