alexa Modeling of Cyclic Ratchetting Plasticity, Part I: Development of Constitutive Relations
Engineering

Engineering

Journal of Steel Structures & Construction

Author(s): Y Jiang, H Sehitoglu

Abstract Share this page

The existing plasticity models recognize that ratchetting direction strongly depends on the loading path, the stress amplitude, and the mean stresses, but their predictions deviate from experiments for a number of materials. We propose an Armstrong-Frederick type hardening rule utilizing the concept of a limiting surface for the backstresses. The model predicts long-term ratchetting rate decay as well as constant ratchetting rate for both proportional and nonproportional loadings. To represent the transient behavior, the model encompasses a memory surface in the deviatoric stress space which recalls the maximum stress level of the prior loading history. The coefficients in the hardening rule, varying as a function of the accumulated plastic strain, serve to represent the cyclic hardening or softening. The stress level effect on ratchetting and non-Masing behavior are realized with the size of the introduced memory surface. Simulations with the model checked favorably with nonproportional multiaxial experiments which are outlined in Part 2 of this paper.

This article was published in Journal of Applied Mechanics and referenced in Journal of Steel Structures & Construction

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords