alexa Modeling the effect of glutamate diffusion and uptake on NMDA and non-NMDA receptor saturation.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Holmes WR

Abstract Share this page

Abstract One- and two-dimensional models of glutamate diffusion, uptake, and binding in the synaptic cleft were developed to determine if the release of single vesicles of glutamate would saturate NMDA and non-NMDA receptors. Ranges of parameter values were used in the simulations to determine the conditions when saturation could occur. Single vesicles of glutamate did not saturate NMDA receptors unless diffusion was very slow and the number of glutamate molecules in a vesicle was large. However, the release of eight vesicles at 400 Hz caused NMDA receptor saturation for all parameter values tested. Glutamate uptake was found to reduce NMDA receptor saturation, but the effect was smaller than that of changes in the diffusion coefficient or in the number of glutamate molecules in a vesicle. Non-NMDA receptors were not saturated unless diffusion was very slow and the number of glutamate molecules in a vesicle was large. The release of eight vesicles at 400 Hz caused significant non-NMDA receptor desensitization. The results suggest that NMDA and non-NMDA receptors are not saturated by single vesicles of glutamate under usual conditions, and that tetanic input, of the type typically used to induce long-term potentiation, will increase calcium influx by increasing receptor binding as well as by reducing voltage-dependent block of NMDA receptors.
This article was published in Biophys J and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords