alexa Modeling the field distribution in deep brain stimulation: the influence of anisotropy of brain tissue.
Neurology

Neurology

Brain Disorders & Therapy

Author(s): Schmidt C, van Rienen U

Abstract Share this page

Abstract The neurosurgical method of deep brain stimulation (DBS) is used to treat symptoms of movement disorders like Parkinson's disease by implanting stimulation electrodes in deep brain areas. The aim of this study was to examine the field distribution in DBS and the role of heterogeneous and anisotropic material properties in the brain areas where stimulation is applied. Finite element models of the human brain were developed comprising tissue heterogeneity and anisotropy. The tissue data were derived from averaged magnetic resonance imaging and diffusion tensor imaging datasets. Unilateral stimulation of the subthalamic nucleus (STN) was computed using an accurate model of an electrode used in clinical treatment of DBS extended with an encapsulation layer around the electrode body. Computations of anisotropic and isotropic brain models, which consider resistive tissue properties for unipolar and bipolar electrode configurations, were carried out. Electrode position was varied within an area around the stimulation center. Results have shown a deviation of 2\% between anisotropic and isotropic field distributions in the vicinity of the STN. The sensitivity of this deviation referring to the electrode position remained small, but increased when the electrode position approached areas of high anisotropy. This article was published in IEEE Trans Biomed Eng and referenced in Brain Disorders & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords