alexa Modeling the yew tree tubulin and a comparison of its interaction with paclitaxel to human tubulin.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Pharmaceutical Care & Health Systems

Author(s): Tuszynski JA, Craddock TJ, Mane JY, Barakat K, Tseng CY,

Abstract Share this page

Abstract PURPOSE: To explore possible ways in which yew tree tubulin is naturally resistant to paclitaxel. While the yew produces a potent cytotoxin, paclitaxel, it is immune to paclitaxel's cytotoxic action. METHODS: Tubulin sequence data for plant species were obtained from Alberta 1000 Plants Initiative. Sequences were assembled with Trinity de novo assembly program and tubulin identified. Homology modeling using MODELLER software was done to generate structures for yew tubulin. Molecular dynamics simulations and molecular mechanics Poisson-Boltzmann calculations were performed with the Amber package to determine binding affinity of paclitaxel to yew tubulin. ClustalW2 program and PHYLIP package were used to perform phylogenetic analysis on plant tubulin sequences. RESULTS: We specifically analyzed several important regions in tubulin structure: the high-affinity paclitaxel binding site, as well as the intermediate binding site and microtubule nanopores. Our analysis indicates that the high-affinity binding site contains several substitutions compared to human tubulin, all of which reduce the binding energy of paclitaxel. CONCLUSIONS: The yew has achieved a significant reduction of paclitaxel's affinity for its tubulin by utilizing several specific residue changes in the binding pocket for paclitaxel. This article was published in Pharm Res and referenced in Journal of Pharmaceutical Care & Health Systems

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords