alexa Modelling paired survival data with covariates.
Mathematics

Mathematics

Journal of Biometrics & Biostatistics

Author(s): Huster WJ, Brookmeyer R, Self SG

Abstract Share this page

Abstract The objective of this paper is to consider the parametric analysis of paired censored survival data when additional covariate information is available, as in the Diabetic Retinopathy Study, which assessed the effectiveness of laser photocoagulation in delaying loss of visual acuity. Our first approach is to extend the fully parametric model of Clayton (1978, Biometrika 65, 141-151) to incorporate covariate information. Our second approach is to obtain parameter estimates from an independence working model together with robust variance estimates. The approaches are compared in terms of efficiency and computational considerations. A fundamental consideration in choosing a strategy for the analysis of paired survival data is whether the correlation within a pair is a nuisance parameter or a parameter of intrinsic scientific interest. The approaches are illustrated with the Diabetic Retinopathy Study.
This article was published in Biometrics and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords