alexa Modelling the adsorption of mercury onto natural and aluminium pillared clays.


Journal of Environmental & Analytical Toxicology

Author(s): Eloussaief M, Sdiri A, Benzina M

Abstract Share this page

Abstract INTRODUCTION: The removal of heavy metals by natural adsorbent has become one of the most attractive solutions for environmental remediation. Natural clay collected from the Late Cretaceous Aleg formation, Tunisia was used as a natural adsorbent for the removal of Hg(II) in aqueous system. METHODS: Physicochemical characterization of the adsorbent was carried out with the aid of various techniques, including chemical analysis, X-ray diffraction, Fourier transform infrared and scanning electron micrograph. Batch sorption technique was selected as an appropriate technique in the current study. Method parameters, including pH, temperature, initial metal concentration and contact time, were varied in order to quantitatively evaluate their effects on Hg(II) adsorption onto the original and pillared clay samples. Adsorption kinetic was studied by fitting the experimental results to the pseudo-first-order and pseudo-second-order kinetic models. The adsorption data were also simulated with Langmuir, Freundlich and Temkin isotherms. RESULTS: Results showed that the natural clay samples are mainly composed of silica, alumina, iron, calcium and magnesium oxides. The sorbents are mainly mesoporous materials with specific surface area of <250 m(2) g(-1). From the adsorption of Hg(II) studies, experimental data demonstrated a high degree of fitness to the pseudo-second-order kinetics with an equilibration time of 240 min. The equilibrium data showed the best model fit to Langmuir model with the maximum adsorption capacities of 9.70 and 49.75 mg g(-1) for the original and aluminium pillared clays, respectively. The maximum adsorption of Hg(II) on the aluminium pillared clay was observed to occur at pH 3.2. The calculated thermodynamic parameters (∆G°, ∆H° and ∆S°) showed an exothermic adsorption process. The entropy values varied between 60.77 and 117.59 J mol(-1) K(-1), and those of enthalpy ranged from 16.31 to 30.77 kJ mol(-1). The equilibrium parameter (R (L)) indicated that the adsorption of Hg(II) on Tunisian smectitic clays was favourable under the experimental conditions of this study. CONCLUSION: The clay of the Aleg formation, Tunisia was found to be an efficient adsorbent for Hg(II) removal in aqueous systems. This article was published in Environ Sci Pollut Res Int and referenced in Journal of Environmental & Analytical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version