alexa Modes of shedding of glycosphingolipids from mouse lymphoma cells.

Author(s): Young WW Jr, Borgman CA, Wolock DM

Abstract Share this page

Abstract To characterize the process by which glycolipids are shed from cell membranes, the cellular and supernatant glycolipids were compared from a variant of the mouse lymphoma L5178Y which had been selected for strong expression of the neutral glycolipid gangliotriaosylceramide (GgOse3Cer). This glycolipid was present in three forms which differed in their fatty acid composition. Whereas the major cell-associated form of GgOse3Cer contained C24 fatty acids, the predominant form shed into the culture supernatant contained C16 fatty acids. Ultracentrifugation of the culture medium yielded a pellet with a GgOse3Cer profile similar to that of the cells and a supernatant enriched in the C16 fatty acid form. Gel filtration of the culture medium revealed two GgOse3Cer-containing pools. The first was excluded from Sepharose CL-2B and had a GgOse3Cer profile similar to that of the cells, while the second migrated with proteins in the range of 25,000-500,000 daltons and was enriched in the C16 fatty acid form. These results suggest two forms in which glycolipids are released from cell membranes. The first is in a large complex, possibly a membrane vesicle, which retains the glycolipid profile of the membrane of intact cells while the second form appears to result from the preferential release of particular glycolipid components.
This article was published in J Biol Chem and referenced in

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Recommended Journals

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords