alexa Modulating the expression of IFN regulatory factor 8 alters the protumorigenic behavior of CD11b+Gr-1+ myeloid cells.
Immunology

Immunology

Journal of Cell Signaling

Author(s): Stewart TJ, Liewehr DJ, Steinberg SM, Greeneltch KM, Abrams SI

Abstract Share this page

Abstract CD11b(+)Gr-1(+)-expressing cells, termed myeloid-derived suppressor cells, can mediate immunosuppression and tumor progression. However, the intrinsic molecular events that drive their protumorigenic behavior remain to be elucidated. Although CD11b(+)Gr-1(+) cells exist at low frequencies in normal mice, it also remains unresolved whether they are biologically distinct from those of tumor-bearing hosts. These objectives were investigated using CD11b(+)Gr-1(+) cells from both implantable (4T1) and autochthonous (mouse mammary tumor virus-polyomavirus middle T Ag (MMTV-PyMT)) mouse models of mammary carcinoma. Limited variation was observed in the expression of markers associated with immunoregulation between CD11b(+)Gr-1(+) cells of both tumor models, as well as with their respective controls (Cnt). Despite limited differences in phenotype, tumor-induced CD11b(+)Gr-1(+) cells were found to produce a more immunosuppressive cytokine profile than that observed by Cnt CD11b(+)Gr-1(+) cells. Furthermore, when admixed with tumor cells, CD11b(+)Gr-1(+) cells from tumor-bearing mice significantly enhanced neoplastic growth compared with counterpart cells from Cnt mice. However, the protumorigenic behavior of these tumor-induced CD11b(+)Gr-1(+) cells was significantly diminished when the expression of IFN regulatory factor 8, a key myeloid-associated transcription factor, was enhanced. The loss of this protumorigenic effect occurred independently of the host immune system and correlated with a CD11b(+)Gr-1(+) cytokine/chemokine production pattern that resembled cells from nontumor-bearing Cnt mice. Overall, our data indicate that 1) tumor-induced CD11b(+)Gr-1(+) cells from both cancer models were phenotypically similar, but biologically distinct from their nontumor-bearing counterparts and 2) modulation of IFN regulatory factor 8 levels in tumor-induced CD11b(+)Gr-1(+) cells can significantly abrogate their protumorigenic behavior, which may have important implications for cancer therapy.
This article was published in J Immunol and referenced in Journal of Cell Signaling

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version