alexa Modulation of CD4 Th cell differentiation by ganglioside GD1a in vitro.

Author(s): Shen W, Falahati R, Stark R, Leitenberg D, Ladisch S

Abstract Share this page

Abstract Cell surface gangliosides are shed by tumors into their microenvironment. In this study they inhibit cellular immune responses, including APC development and function, which is critical for Th1 and Th2 cell development. Using human dendritic cells (DCs) and naive CD4(+) T cells, we separately evaluated Th1 and Th2 development under the selective differentiating pressures of DC1-inducing pertussis toxin (PT) and DC2-inducing cholera toxin (CT). High DC IL-12 production after PT exposure and high DC IL-10 production after CT exposure were observed, as expected. However, when DCs were first preincubated with highly purified G(D1a) ganglioside, up-regulation of costimulatory molecules was blunted, and PT-induced IL-12 production was reduced, whereas CT-induced IL-10 production was increased. The combination of these effects could contribute to a block in the Th1 response. In fact, when untreated naive T cells were coincubated with ganglioside-preincubated, Ag-exposed DCs, naive Th cell differentiation into Th effector cells was reduced. Both the subsequent DC1-induced T cell production of IFN-gamma (Th1 marker) and DC2-induced T cell IL-4 production (Th2) were inhibited. Thus, ganglioside exposure of DC impairs, by at least two distinct mechanisms, the ability to induce Th differentiation, which could adversely affect the development of an effective cellular antitumor immune response.
This article was published in J Immunol and referenced in

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Recommended Journals

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version