alexa Modulation of early [Ca2+]i rise in metabolically inhibited endothelial cells by xestospongin C.
Medicine

Medicine

Journal of Gerontology & Geriatric Research

Author(s): Schfer M, Bahde D, Bosche B, Ladilov Y, Schfer C,

Abstract Share this page

Abstract When energy metabolism is disrupted, endothelial cells lose Ca(2+) from endoplasmic reticulum (ER) and the cytosolic Ca(2+) concentration ([Ca(2+)](i)) increases. The importance of glycolytic energy production and the mechanism of Ca(2+) loss from the ER were analyzed. Endothelial cells from porcine aorta in culture and in situ were used as models. 2-Deoxy-D-glucose (2-DG, 10 mM), an inhibitor of glycolysis, caused an increase in [Ca(2+)](i) (measured with fura 2) within 1 min when total cellular ATP contents were not yet affected. Stimulation of oxidative energy production with pyruvate (5 mM) did not attenuate this 2-DG-induced rise of [Ca(2+)](i), while this maneuver preserved cellular ATP contents. The inhibitor of ER-Ca(2+)-ATPase, thapsigargin (10 nM), augmented the 2-DG-induced rise of [Ca(2+)](i). Xestospongin C (3 microM), an inhibitor of D-myo-inositol 3-phosphate [Ins(3)P]-sensitive ER-Ca(2+) release, abolished the rise. The results demonstrate that the ER of endothelial cells is very sensitive to glycolytic metabolic inhibition. When this occurs, the ER Ca(2+) store is discharged by opening of the Ins(3)P-sensitive release channel. Xestospongin C can effectively suppress the early [Ca(2+)](i) rise in metabolically inhibited endothelial cells.
This article was published in Am J Physiol Heart Circ Physiol and referenced in Journal of Gerontology & Geriatric Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords