alexa Modulation of N-methyl-D-aspartate receptor function by glycine transport.
Medicine

Medicine

Translational Medicine

Author(s): Bergeron R, Meyer TM, Coyle JT, Greene RW

Abstract Share this page

Abstract The recent discovery of glycine transporters in both the central nervous system and the periphery suggests that glycine transport may be critical to N-methyl-D-aspartate receptor (NMDAR) function by controlling glycine concentration at the NMDAR modulatory glycine site. Data obtained from whole-cell patch-clamp recordings of hippocampal pyramidal neurons, in vitro, demonstrated that exogenous glycine and glycine transporter type 1 (GLYT1) antagonist selectively enhanced the amplitude of the NMDA component of a glutamatergic excitatory postsynaptic current. The effect was blocked by 2-amino-5-phosphonovaleric acid and 7-chloro-kynurenic acid but not by strychnine. Thus, the glycine-binding site was not saturated under the control conditions. Furthermore, GLYT1 antagonist enhanced NMDAR function during perfusion with medium containing 10 microM glycine, a concentration similar to that in the cerebrospinal fluid in vivo, thereby supporting the hypothesis that the GLYT1 maintains subsaturating concentration of glycine at synaptically activated NMDAR. The enhancement of NMDAR function by specific GLYT1 antagonism may be a feasible target for therapeutic agents directed toward diseases related to hypofunction of NMDAR.
This article was published in Proc Natl Acad Sci U S A and referenced in Translational Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords