alexa Modulation of the function of the multidrug resistance-linked ATP-binding cassette transporter ABCG2 by the cancer chemopreventive agent curcumin.
Toxicology

Toxicology

Journal of Drug Metabolism & Toxicology

Author(s): Chearwae W, Shukla S, Limtrakul P, Ambudkar SV

Abstract Share this page

Abstract Curcumin (curcumin I), demethoxycurcumin (curcumin II), and bisdemethoxycurcumin (curcumin III) are the major forms of curcuminoids found in the turmeric powder, which exhibit anticancer, antioxidant, and anti-inflammatory activities. In this study, we evaluated the ability of purified curcuminoids to modulate the function of either the wild-type 482R or the mutant 482T ABCG2 transporter stably expressed in HEK293 cells and drug-selected MCF-7 FLV1000 and MCF-7 AdVp3000 cells. Curcuminoids inhibited the transport of mitoxantrone and pheophorbide a from ABCG2-expressing cells. However, both cytotoxicity and [(3)H]curcumin I accumulation assays showed that curcuminoids are not transported by ABCG2. Nontoxic concentration of curcumin I, II, and III sensitized the ABCG2-expressing cells to mitoxantrone, topotecan, SN-38, and doxorubicin. This reversal was not due to reduced expression because ABCG2 protein levels were unaltered by treatment with 10 mumol/L curcuminoids for 72 hours. Curcumin I, II, and III stimulated (2.4- to 3.3-fold) ABCG2-mediated ATP hydrolysis and the IC(50)s were in the range of 7.5 to 18 nmol/L, suggesting a high affinity of curcuminoids for ABCG2. Curcuminoids also inhibited the photolabeling of ABCG2 with [(125)I]iodoarylazidoprazosin and [(3)H]azidopine as well as the transport of these two substrates in ABCG2-expressing cells. Curcuminoids did not inhibit the binding of [alpha-(32)P]8-azidoATP to ABCG2, suggesting that they do not interact with the ATP-binding site of the transporter. Collectively, these data show that, among curcuminoids, curcumin I is the most potent modulator of ABCG2 and thus should be considered as a treatment to increase the efficacy of conventional chemotherapeutic drugs. This article was published in Mol Cancer Ther and referenced in Journal of Drug Metabolism & Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords