alexa Moisture-induced solid state instabilities in alpha-chymotrypsin and their reduction through chemical glycosylation.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): FloresFernndez GM, Pagn M, Almenas M, Sol RJ, Griebenow K

Abstract Share this page

Abstract BACKGROUND: Protein instability remains the main factor limiting the development of protein therapeutics. The fragile nature (structurally and chemically) of proteins makes them susceptible to detrimental events during processing, storage, and delivery. To overcome this, proteins are often formulated in the solid-state which combines superior stability properties with reduced operational costs. Nevertheless, solid protein pharmaceuticals can also suffer from instability problems due to moisture sorption. Chemical protein glycosylation has evolved into an important tool to overcome several instability issues associated with proteins. Herein, we employed chemical glycosylation to stabilize a solid-state protein formulation against moisture-induced deterioration in the lyophilized state. RESULTS: First, we investigated the consequences of moisture sorption on the stability and structural conformation of the model enzyme alpha-chymotrypsin (alpha-CT) under controlled humidity conditions. Results showed that alpha-CT aggregates and inactivates as a function of increased relative humidity (RH). Furthermore, alpha-CT loses its native secondary and tertiary structure rapidly at increasing RH. In addition, H/D exchange studies revealed that alpha-CT structural dynamics increased at increasing RH. The magnitude of the structural changes in tendency parallels the solid-state instability data (i.e., formation of buffer-insoluble aggregates, inactivation, and loss of native conformation upon reconstitution). To determine if these moisture-induced instability issues could be ameliorated by chemical glycosylation we proceeded to modify our model protein with chemically activated glycans of differing lengths (lactose and dextran (10 kDa)). The various glycoconjugates showed a marked decrease in aggregation and an increase in residual activity after incubation. These stabilization effects were found to be independent of the glycan size. CONCLUSION: Water sorption leads to aggregation, inactivation, and structural changes of alpha-CT as has been similarly shown to occur for many other proteins. These instabilities correlate with an increase in protein structural dynamics as a result of moisture exposure. In this work, we present a novel methodology to stabilize proteins against structural perturbations in the solid-state since chemical glycosylation was effective in decreasing and/or preventing the traditionally observed moisture-induced aggregation and inactivation. It is suggested that the stabilization provided by these chemically attached glycans comes from the steric hindrance that the sugars conveys on the protein surface therefore preventing the interaction of the protein internal electrostatics with that of the water molecules and thus reducing the protein structural dynamics upon moisture exposure.
This article was published in BMC Biotechnol and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
  • Graphene & 2D Materials
    November 6-7, 2017 Frankfurt, Germany
  • World Congress on Nanoscience and Nano Technology
    October 16-17, 2017 Dubai, UAE
  • World Medical Nanotechnology Congress
    October 18-19, 2017 Osaka, Japan
  • Nanoscienceand Molecular Nanotechnology
    Nov 06-08, 2017 Frankfurt, Germany
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords