alexa Molecular adsorption and metal-support interaction for transition-metal clusters in zeolites: NO adsorption on Pd(n) (n=1-6) clusters in mordenite.
Chemical Engineering

Chemical Engineering

Journal of Advanced Chemical Engineering

Author(s): Grybos R, Benco L, Bucko T, Hafner J

Abstract Share this page

Abstract The adsorption of NO molecules on Pd(n) clusters of varying size (n=1-6) located in the main channel of mordenite and the interaction of the metallic clusters with the zeolitic framework were investigated using ab initio density-functional calculations under periodic boundary conditions. The supported clusters are created by binding Pd(n) (2+) cations to the inner cavity of a deprotonated Al-exchanged zeolite with an Al/Si ratio of 1/11, such that a charge-neutral system is created. Compared to the highly symmetric structures of the gas-phase clusters, the clusters bound to the zeolitic framework undergo appreciable geometric distortions lowering their symmetry. The distortions are induced by strong interactions with "activated" framework oxygens located close to the charge-compensating Al/Si substitution sites, but the cluster forms also weaker bonds to "nonactivated" oxygen atoms. The interaction with the framework also affects the electronic and magnetic properties of the clusters. While in the gas phase all clusters (except the isolated Pd atom with a closed d(10) ground state) have a paramagnetic moment of 2mu(B), in the zeolite clusters with two to four atoms have zero magnetic moment, while the Pd(5) cluster has a magnetic moment of 2mu(B) and for the Pd(6) cluster, it is even enhanced to 4 mu(B) (but the magnetic energy differences relative to low-spin configurations are modest). Analysis of the magnetization densities shows that in all clusters with zero total moment (singlet ground state), there are sites with excess spin densities of opposite sign. The influence of the cluster-support interaction on the chemical properties of the clusters has been tested by the adsorption of NO molecules. The results demonstrate the interplay between the molecule-cluster and cluster-framework interactions, which can lead to an increase or decrease in the adsorption energy compared to NO on a gas-phase cluster. While on the gas-phase cluster adsorption in low-coordination sites (vertex or bridge) is preferred, for the cluster in the zeolite adsorption in threefold coordinated hollow or twofold bridge sites is preferred. The magnetic properties of the clusters and of the paramagnetic NO molecule play an important role. For the supported clusters with zero magnetic moment, upon adsorption the spin of the molecule is transferred to the cluster (and induces also a modest polarization of the framework). For magnetic clusters, spin pairing induces a reduced magnetic moment of the NO-Pd(n) complex. The redshift of the NO stretching frequencies is reduced compared to the free clusters by the cluster-support interaction for the smaller clusters, while it remains essentially unchanged for the larger clusters. A detailed electronic analysis of the cluster-support interactions and of the adsorption properties is presented. This article was published in J Chem Phys and referenced in Journal of Advanced Chemical Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version