alexa Molecular characterization of poxviruses associated with tattoo skin lesions in UK cetaceans.


Journal of Antivirals & Antiretrovirals

Author(s): Blacklaws BA, Gajda AM, Tippelt S, Jepson PD, Deaville R,

Abstract Share this page

Abstract There is increasing concern for the well-being of cetacean populations around the UK. Tattoo skin disease (characterised by irregular, grey, black or yellowish, stippled cutaneous lesions) caused by poxvirus infection is a potential health indicatora potential health indicator for cetaceans. Limited sequence data indicates that cetacean poxviruses (CPVs) belong to an unassigned genus of the Chordopoxvirinae. To obtain further insight into the phylogenetic relationships between CPV and other Chordopoxvirinae members we partially characterized viral DNA originating from tattoo lesions collected in Delphinidae and Phocoenidae stranded along the UK coastline in 1998-2008. We also evaluated the presence of CPV in skin lesions other than tattoos to examine specificity and sensitivity of visual diagnosis. After DNA extraction, regions of the DNA polymerase and DNA topoisomerase I genes were amplified by PCR, sequenced and compared with other isolates. The presence of CPV DNA was demonstrated in tattoos from one striped dolphin (Stenella coeruleoalba), eight harbour porpoises (Phocoena phocoena) and one short-beaked common dolphin (Delphinus delphis) and in one 'dubious tattoo' lesion detected in one other porpoise. Seventeen of the 18 PCR positive skin lesions had been visually identified as tattoos and one as a dubious tattoo. None of the other skin lesions were PCR positive. Thus, visual identification had a 94.4\% sensitivity and 100\% specificity. The DNA polymerase PCR was most effective in detecting CPV DNA. Limited sequence phylogeny grouped the UK samples within the odontocete poxviruses (CPV group 1) and indicated that two different poxvirus lineages infect the Phocoenidae and the Delphinidae. The phylogenetic tree had three major branches: one with the UK Phocoenidae viruses, one with the Delphinidae isolates and one for the mysticete poxvirus (CPV group 2). This implies a radiation of poxviruses according to the host suborder and the families within these suborders.
This article was published in PLoS One and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version