alexa Molecular cloning, expression, and characterization of the authentic hyaluronan synthase from group C Streptococcus equisimilis.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Kumari K, Weigel PH

Abstract Share this page

Abstract We previously reported the first cloning of a functional glycosaminoglycan synthase, the hyaluronan synthase (HAS) from Group A Streptococcus pyogenes (spHAS) (DeAngelis, P. L., Papaconstantinou, J., and Weigel, P. H. (1993) J. Biol. Chem. 268, 19181-19184). Group A spHAS was unrelated to a putative Group C HA synthase reported by others (Lansing, M., Lellig, S., Mausolf, A., Martini, I. , Crescenzi, F., Oregon, M., and Prehm, P. (1993) Biochem. J. 289, 179-184). Here we report the isolation of a bona fide HA synthase gene from a highly encapsulated strain of Group C Streptococcus equisimilis. The encoded protein, designated seHAS, is 417 amino acids long (calculated molecular weight, 47,778; calculated pI, 9.1) and is the smallest member of the HAS family identified thus far. The enzyme migrates anomalously fast in SDS-polyacrylamide gel electrophoresis (approximately 42,000 Da). The seHAS protein shows no similarity (<2\% identity) to the previously reported Group C gene, which is not an HA synthase. The seHAS and spHAS protein and coding sequences are 72 and 70\% identical, respectively. seHAS is also similar to eukaryotic HAS1 (approximately 31\% identical), HAS2 (approximately 28\% identical), and HAS3 (28\% identical). The deduced protein sequence of seHAS was confirmed by reactivity with a synthetic peptide antibody. Recombinant seHAS expressed in Escherichia coli was recovered in membranes as a major protein (approximately 10\% of the total protein) and synthesized very large HA (Mr >7 x 10(6)) in the presence of UDP-GlcNAc and UDP-GlcA. The product contained equimolar amounts of both sugars and was degraded by the specific Streptomyces hyaluronidase. Comparison of the two recombinant streptococcal enzymes in isolated membranes showed that seHAS and spHAS are essentially identical in the steady-state size distribution of HA chains they synthesize, but seHAS has an intrinsic 2-fold faster rate of chain elongation (Vmax) than spHAS. seHAS is the most active HA synthase identified thus far; it polymerizes HA at an average rate of 160 monosaccharides/s. The two bacterial HA synthase genes may have arisen from a common ancient gene shared with the early evolving vertebrates.
This article was published in J Biol Chem and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 3rd International Conference on Transcriptomics
    October 30 - November 01, 2017 Bangkok, Thailand

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords