alexa Molecular determinants of Pb2+ interaction with NMDA receptor channels.
Toxicology

Toxicology

Journal of Drug Metabolism & Toxicology

Author(s): Gavazzo P, Zanardi I, BaranowskaBosiacka I, Marchetti C, Gavazzo P, Zanardi I, BaranowskaBosiacka I, Marchetti C

Abstract Share this page

Abstract Lead (Pb2+) is a potent neurotoxin that acts as a non-competitive, voltage-independent antagonist of the NMDA receptor (NR) channel. Pb2+ action partially overlaps with that of zinc (Zn2+), but precise coincidence with Zn2+ binding site is debated. We investigated the site of Pb2+ interaction in NR channels expressed in Xenopus laevis oocytes from the clones zeta1, epsilon1 or epsilon2 and mutated epsilon1 or epsilon2 forms. For each epsilon subunit we chose two mutations that have been identified as 'strong mutations' for Zn2+ binding and examined the effect of Pb2+ on channels that contained those mutations. In epsilon1-containing channels, mutations D102A and H128A caused a decrease of Pb2+ inhibition with a 10-fold (D102A) and four-fold (H128A) shift of IC50. In epsilon2-containing channels, the most effective mutation in removing Pb2+ inhibition was H127A, with a five-fold increase of IC50, while D101A was virtually ineffective. Other mutations, D104A, T103A, and T233A, were less effective. The double mutation D101AH127A, while reducing Zn2+ inhibition by nearly nine-fold, caused a minor (less than two-fold) shift in Pb2+ IC50. Competition experiments showed that increasing doses of Zn2+ reduced the apparent affinity for Pb2+ in epsilon1-containing receptors, but not in epsilon2-containing receptors. In addition the effect of Pb2+ on epsilon2-containing channels was additive with that of ifenprodil, with no competition for the site. Although none of the mutations that we have tested abolished the block by Pb2+, our results indicate that the action of this toxic metal on NR channels is more dependent on the receptor composition than previously thought, because Zn2+ is able to displace Pb2+ from its binding site in epsilon1-containing channels, but not in epsilon2-containing channels. This article was published in Neurochem Int and referenced in Journal of Drug Metabolism & Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords