alexa Molecular evidence supporting the portal theory: a causative link between visceral adiposity and hepatic insulin resistance.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Kabir M, Catalano KJ, Ananthnarayan S, Kim SP, Van Citters GW,

Abstract Share this page

Abstract The mechanism by which increased central adiposity causes hepatic insulin resistance is unclear. The "portal hypothesis" implicates increased lipolytic activity in the visceral fat and therefore increased delivery of free fatty acids (FFA) to the liver, ultimately leading to liver insulin resistance. To test the portal hypothesis at the transcriptional level, we studied expression of several genes involved in glucose and lipid metabolism in the fat-fed dog model with visceral adiposity vs. controls (n = 6). Tissue samples were obtained from dogs after 12 wk of either moderate fat (42\% calories from fat; n = 6) or control diet (35\% calories from fat). Northern blot analysis revealed an increase in the ratio of visceral to subcutaneous (v/s ratio) mRNA expression of both lipoprotein lipase (LPL) and peroxisome proliferator-activated receptor-gamma (PPARgamma). In addition, the ratio for sterol regulatory element-binding transcription factor-1 (SREBP-1) tended to be higher in fat-fed dogs, suggesting enhanced lipid accumulation in the visceral fat depot. The v/s ratio of hormone-sensitive lipase (HSL) increased significantly, implicating a higher rate of lipolysis in visceral adipose despite hyperinsulinemia in obese dogs. In fat-fed dogs, liver SREBP-1 expression was increased significantly, with a tendency for increased fatty acid-binding protein (FABP) expression. In addition, glucose-6-phosphatase (G-6-Pase) and phosphoenolpyruvate carboxykinase (PEPCK) increased significantly, consistent with enhanced gluconeogenesis. Liver triglyceride content was elevated 45\% in fat-fed animals vs. controls. Moreover, insulin receptor binding was 50\% lower in fat-fed dogs. Increased gene expression promoting lipid accumulation and lipolysis in visceral fat, as well as elevated rate-limiting gluconeogenic enzyme expression in the liver, is consistent with the portal theory. Further studies will need to be performed to determine whether FFA are involved directly in this pathway and whether other signals (either humoral and/or neural) may contribute to the development of hepatic insulin resistance observed with visceral obesity. This article was published in Am J Physiol Endocrinol Metab and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords