alexa Molecular immunolabeling with recombinant single-chain variable fragment (scFv) antibodies designed with metal-binding domains
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Malecki M

Abstract Share this page

To study the molecular structure and function of gene products in situ, we developed a molecular immunolabeling technology. Starting with cDNA from hybridomas producing monoclonal antibodies against biotin, catalase, and superoxide dismutase, we bioengineered recombinant single-chain variable fragment antibodies (scFv) and their derivatives containing metal-binding domains (scFv:MBD). As tested with surface plasmon resonance and enzyme-linked immunosorbent assay, affinity binding constants of the scFv (5.21 x 10(6) M(-1)) and scFv:MBD (4.17 x 10(6) M(-1)) were close to those of Fab proteolytic fragments (9.78 x 10(6) M(-1)) derived from the parental IgG antibodies. After saturation of MBD with nickel or cobalt, scFv:MBD was imaged with electron spectroscopic imaging at each element's specific energy loss, thus generating the element's map. Immunolabeling with scFv:MBD resulted in a significant improvement of the labeling fidelity over that obtained with Fab or IgG derivatives, as it produced a much heavier specific labeling and label-free background. As determined with radioimmunoassay, labeling effectiveness with scFv:MBD was nearly the same as with scFv, but much higher than with scFv conjugated to colloidal gold, Nanogold, or horseradish peroxidase. This technology opens possibilities for simultaneous imaging of multiple molecules labeled with scFv:MBD at the molecular resolution within the same sample with electron spectroscopic imaging. Moreover, the same scFv:MBD can also be imaged with fluorescence resonance energy transfer and lifetime imaging as well as positron emission tomography and magnetic resonance imaging. Therefore, this technology may serve as an integrative factor in life science endeavors.

This article was published in Proc Natl Acad Sci and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords