alexa Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity.
Neurology

Neurology

Journal of Neurology & Neurophysiology

Author(s): Arundine M, Tymianski M

Abstract Share this page

Abstract Excitotoxicity contributes to neuronal degeneration in many acute CNS diseases, including ischemia, trauma, and epilepsy, and may also play a role in chronic diseases, such as amyotrophic lateral sclerosis (ALS). Key mediators of excitotoxic damage are Ca ions (Ca(2+)), which under physiological conditions govern a multitude of cellular processes, including cell growth, differentiation, and synaptic activity. Consequently, homeostatic mechanisms exist to maintain a low intracellular Ca(2+) ion concentration so that Ca(2+) signals remain spatially and temporally localized. This permits multiple independent Ca-mediated signaling pathways to occur in the same cell. In excitotoxicity, excessive synaptic release of glutamate can lead to the disregulation of Ca(2+) homeostasis. Glutamate activates postsynaptic receptors, including the ionotropic N-methyl-D-aspartate (NMDA), 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) proprionate (AMPA), and kainate receptors. Upon their activation, these open their associated ion channel to allow the influx of Ca(2+) and Na(+) ions. Although physiological elevations in intracellular Ca(2+) are salient to normal cell functioning, the excessive influx of Ca(2+) together with any Ca(2+) release from intracellular compartments can overwhelm Ca(2+)-regulatory mechanisms and lead to cell death. Although Ca(2+) disregulation is paramount to neurodegeneration, the exact mechanism by which Ca(2+) ions actually mediate excitotoxicity is less clear. One hypothesis outlined in this review suggests that Ca(2+)-dependent neurotoxicity occurs following the activation of distinct signaling cascades downstream from key points of Ca(2+) entry at synapses, and that triggers of these cascades are physically co-localized with specific glutamate receptors. Thus, we summarize the importance of Ca(2+) regulation in mammalian neurons and the excitotoxicity hypothesis, and focus on the molecular determinants of glutamate receptor-mediated excitotoxic mechanisms.
This article was published in Cell Calcium and referenced in Journal of Neurology & Neurophysiology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords