alexa Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Landini P, Antoniani D, Burgess JG, Nijland R

Abstract Share this page

Abstract Bacteria can switch between planktonic forms (single cells) and biofilms, i.e., bacterial communities growing on solid surfaces and embedded in a matrix of extracellular polymeric substance. Biofilm formation by pathogenic bacteria often results in lower susceptibility to antibiotic treatments and in the development of chronic infections; thus, biofilm formation can be considered an important virulence factor. In recent years, much attention has been directed towards understanding the biology of biofilms and towards searching for inhibitors of biofilm development and of biofilm-related cellular processes. In this report, we review selected examples of target-based screening for anti-biofilm agents: We focus on inhibitors of quorum sensing, possibly the most characterized target for molecules with anti-biofilm activity, and on compounds interfering with the metabolism of the signal molecule cyclic di-GMP metabolism and on inhibitors of DNA and nucleotide biosynthesis, which represent a novel and promising class of biofilm inhibitors. Finally, we discuss the activation of biofilm dispersal as a novel mode of action for anti-biofilm compounds. This article was published in Appl Microbiol Biotechnol and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords