alexa Molecular mechanisms of Nrf2-mediated antioxidant response.
Immunology

Immunology

International Journal of Inflammation, Cancer and Integrative Therapy

Author(s): Li W, Kong AN, Li W, Kong AN

Abstract Share this page

Abstract Nrf2 is the key transcription factor regulating the antioxidant response. Nrf2 signaling is repressed by Keap1 at basal condition and induced by oxidative stress. Keap1 is recently identified as a Cullin 3-dependent substrate adaptor protein. A two-sites binding "hinge & latch" model vividly depicts how Keap1 can efficiently present Nrf2 as substrate for ubiquitination. Oxidative perturbation can impede Keap1-mediated Nrf2 ubiquitination but fail to disrupt Nrf2/Keap1 binding. Nrf2 per se is a redox-sensitive transcription factor. A new Nrf2-mediated redox signaling model is proposed based on these new discoveries. Free floating Nrf2 protein functions as a redox-sensitive probe. Keap1 instead functions as a gate keeper to control the availability of Nrf2 probes and thus regulates the overall sensitivity of the redox signaling. Copyright 2008 Wiley-Liss, Inc.
This article was published in Mol Carcinog and referenced in International Journal of Inflammation, Cancer and Integrative Therapy

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords