alexa Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation.


Anatomy & Physiology: Current Research

Author(s): Yue L, Melnyk P, Gaspo R, Wang Z, Nattel S

Abstract Share this page

Abstract The rapid atrial rate during atrial fibrillation (AF) decreases the ionic current density of transient outward K+ current, L-type Ca2+ current, and Na+ current, thereby altering cardiac electrophysiology and promoting arrhythmia maintenance. To assess possible underlying changes in cardiac gene expression, we applied competitive reverse transcriptase-polymerase chain reaction to quantify mRNA concentrations in dogs subjected to 7 (group P7 dogs) or 42 (group P42 dogs) days of atrial pacing at 400 bpm and in sham controls. Rapid pacing reduced mRNA concentrations of Kv4.3 (putative gene encoding transient outward K+ current; by 60\% in P7 and 74\% in P42 dogs; P<0.01 and P<0.001, respectively, versus shams), the alpha1c subunit of L-type Ca2+ channels (by 57\% in P7 and 72\% in P42 dogs; P<0.01 versus shams for each) and the alpha subunit of cardiac Na+ channels (by 18\% in P7 and 42\% in P42; P=NS and P<0.01, respectively, versus shams) genes. The observed changes in ion channel mRNA concentrations paralleled previously measured changes in corresponding atrial ionic current densities. Atrial tachycardia did not affect mRNA concentrations of genes encoding delayed or Kir2.1 inward rectifier K+ currents (of which the densities are unchanged by atrial tachycardia) or of the Na+,Ca2+ exchanger. Western blot techniques were used to quantify protein expression for Kv4.3 and Na+ channel alpha subunits, which were decreased by 72\% and 47\%, respectively, in P42 dogs (P<0.001 versus control for each), in a manner quantitatively similar to measured changes in mRNA and currents, whereas Na+,Ca2+ exchanger protein concentration was unchanged. We conclude that chronic atrial tachycardia alters atrial ion channel gene expression, thereby altering ionic currents in a fashion that promotes the occurrence of AF. These observations provide a potential molecular basis for the self-perpetuating nature of AF.
This article was published in Circ Res and referenced in Anatomy & Physiology: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version