alexa Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Palmowski M, Huppert J, Ladewig G, Hauff P, Reinhardt M,

Abstract Share this page

Abstract Molecular ultrasound is capable of elucidating the expression of angiogenic markers in vivo. However, the capability of the method for volumetric "multitarget quantification" and for the assessment of antiangiogenic therapy response has rather been investigated. Therefore, we generated cyanoacrylate microbubbles linked to vascular endothelial growth factor receptor 2 (VEGFR2) and alphavbeta3 integrin binding ligands and quantified their accumulation in squamous cell carcinoma xenografts (HaCaT-ras-A-5RT3) in mice with the quantitative volumetric ultrasound scanning technique, sensitive particle acoustic quantification. Specificity of VEGFR2 and alphavbeta3 integrin binding microbubbles was shown, and changes in marker expression during matrix metalloproteinase inhibitor treatment were investigated. In tumors, accumulation of targeted microbubbles was significantly higher compared with nonspecific ones and could be inhibited competitively by addition of the free ligand in excess. Also, multimarker imaging could successfully be done during the same imaging session. Molecular ultrasound further indicated a significant increase of VEGFR2 and alphavbeta3 integrin expression during tumor growth and a considerable decrease in both marker densities after matrix metalloproteinase inhibitor treatment. Histologic data suggested that the increasing VEGFR2 and alphavbeta3 integrin concentrations in tumors during growth are related to an up-regulation of its expression by the endothelial cells, whereas its decrease under therapy is more related to the decreasing relative vessel density. In conclusion, targeted ultrasound appears feasible for the longitudinal molecular profiling of tumor angiogenesis and for the sensitive assessment of therapy effects in vivo. This article was published in Mol Cancer Ther and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version