alexa Molecular targets of tea polyphenols in the cardiovascular system.
Materials Science

Materials Science

Journal of Nanomedicine & Biotherapeutic Discovery

Author(s): Stangl V, Dreger H, Stangl K, Lorenz M

Abstract Share this page

Abstract Tea-derived polyphenols have attracted considerable attention in the prevention of cancer and cardiovascular diseases. In comparison to tumour cells, the elucidation of their molecular targets in cardiovascular relevant cells is still at the beginning. Although promising experimental and clinical data demonstrate protective effects for the cardiovascular system, little information is actually available on how these beneficial effects of tea polyphenols are mediated at the cellular level. By affecting the activity of receptor and signal transduction kinases, both catechins and theaflavins--the major ingredients of green and black tea, respectively--exert a variety of cardiovascular beneficial effects. In general, the number and positions of galloyl groups have major influence on the potency of polyphenols. Compared to their broad impact on cellular signal transduction, tea polyphenols reveal little transcriptional effects. However, more detailed and profound analysis of molecular actions in different cells of the cardiovascular system is necessary before safe clinical use of tea polyphenols for treatment of cardiovascular diseases will become possible. This article was published in Cardiovasc Res and referenced in Journal of Nanomedicine & Biotherapeutic Discovery

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords