alexa Monocarboxylate transporter 1 mediates biotin uptake in human peripheral blood mononuclear cells.


Biochemistry & Analytical Biochemistry

Author(s): Daberkow RL, White BR, Cederberg RA, Griffin JB, Zempleni J

Abstract Share this page

Abstract Here the hypothesis was tested that monocarboxylate transporters (MCT) mediate biotin transport in human lymphoid cells. Uptake of [(3)H]biotin was measured in human lymphoid cells [peripheral blood mononuclear cells (PBMC) and Jurkat cells] under conditions known to affect MCT-mediated transport. When biotin uptake into PBMC was measured in the presence of excess concentrations of competitors (MCT substrates) and MCT inhibitors, transport rates decreased significantly to <75 and <67\%, respectively, of controls. Biotin uptake correlated with the concentration of protons in culture media, consistent with cotransport of protons and the carboxylate biotin by MCT. Efflux of biotin from PBMC was stimulated by extracellular lactate (a known substrate for MCT), consistent with countertransport of the two substrates by the same transporter. PBMC responded to proliferation with parallel increases of transport rates for both biotin and lactate, providing circumstantial evidence that the same transporter mediates uptake of the two substrates in PBMC. Transfection of Jurkat cells with an expression vector encoding MCT1 caused a 50\% increase in biotin uptake; in contrast, overexpression of MCT1 did not affect biotin uptake in various nonlymphoid cell lines. These findings are consistent with the hypothesis that MCT mediate biotin uptake in human lymphoid cells.
This article was published in J Nutr and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

1-702-714-7001Extn: 9042

General Science

Andrea Jason

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001Extn: 9042

© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version