alexa Morphogenesis of a protein: folding pathways and the energy landscape.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Brunori M, Gianni S, Giri R, Morrone A, TravagliniAllocatelli C

Abstract Share this page

Abstract Current knowledge on the reaction whereby a protein acquires its native three-dimensional structure was obtained by and large through characterization of the folding mechanism of simple systems. Given the multiplicity of amino acid sequences and unique folds, it is not so easy, however, to draw general rules by comparing folding pathways of different proteins. In fact, quantitative comparison may be jeopardized not only because of the vast repertoire of sequences but also in view of a multiplicity of structures of the native and denatured states. We have tackled the problem of the relationships between the sequence information and the folding pathway of a protein, using a combination of kinetics, protein engineering and computational methods, applied to relatively simple systems. Our strategy has been to investigate the folding mechanism determinants using two complementary approaches, i.e. (i) the study of members of the same family characterized by a common fold, but substantial differences in amino acid sequence, or (ii) heteromorphic pairs characterized by largely identical sequences but with different folds. We discuss some recent data on protein-folding mechanisms by presenting experiments on different members of the PDZ domain family and their circularly permuted variants. Characterization of the energetics and structures of intermediates and TSs (transition states), obtained by Φ-value analysis and restrained MD (molecular dynamics) simulations, provides a glimpse of the malleability of the dynamic states and of the role of the topology of the native states and of the denatured states in dictating folding and misfolding pathways. This article was published in Biochem Soc Trans and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version